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Electromagnetic Wave Propagation in an Externally
Modulated Low-Pass Transmission Line

José Roberto Reyes-Ayona and Peter Halevi

Abstract— We present a novel concept of a modulated trans-
mission line: a low-pass dynamic transmission line (DTL) whose
capacitors are replaced by varactors that are externally modu-
lated in tandem. The modulation voltages are periodic in time
and identical in all the unit cells (and there is no pump wave).
Accurate modeling leads to two bands, β1(ω) and β2(ω) for
the propagation constant, separated by a gap �β. We have
fabricated an eight-cell DTL and measured β1,2(ω) for a range
of frequencies of the signal wave up to the modulation frequency
fM = 310 MHz, finding very good agreement between the
experimental and theoretical results. These are also compared
with an effective medium description, with the dynamic permit-
tivity ε(t) being equal to the distributed capacitance C(t)/a at
every instant t and the permeability μ equal to the distributed
inductance L/a, where a is the size of the unit cell. There is
good agreement for long wavelengths, βa � 1, including the
β-gap, which, for negligible resistive effects, is proportional to the
modulation strength. Such gaps are characteristic of periodicity
in time of a parameter and were predicted for “temporal photonic
crystals.” We have also confirmed experimentally that for every
frequency f , a harmonic of frequency fM − f is excited, giving
rise to beats when f ∼= fM/2. We expect these experimental and
theoretical results to open a new platform for useful applications.

Index Terms— Active circuits, capacitors, dielectric constant,
eigenvalues and eigenfunctions, low-pass filters, microwave cir-
cuits, microwave propagation, phase measurement, propagation,
RLC circuits, transmission line measurements, varactors, waves.

I. INTRODUCTION

WAVE propagation in transmission lines has been the
subject of study for many decades. In the 1960s,

traveling-wave amplifiers (TWPAs) were widely studied after
Cullen [1] showed that parametric excitation of an elec-
tric oscillatory circuit was possible and that any method of
periodically varying the capacitance or the inductance could
be used. In a series of works, Cassedy [2], [4], [5] and
Cassedy and Oliner [3] researched the dispersion relations of
TWPAs, finding forbidden bands for the imaginary part of the
propagation constant βa and discussing the harmonics of the
modulation frequency.

Prior to semiconductor amplifiers (which are less com-
plex and have lower noise), TWPAs were very popular
and improvements were achieved in the bandwidth, gain,

Manuscript received December 31, 2015; revised June 30, 2016 and
August 16, 2016; accepted August 19, 2016. This work was supported by
CONACYT under Project 103644-F. The work of J. R. Reyes-Ayona was
supported by CONACYT under Scholarship 317142.

The authors are with the Instituto Nacional de Astrofísica, Óptica y Elec-
trónica, Tonantzintla, Puebla 72840, México (e-mail: ayonarey@hotmail.com;
halevi@inaoep.mx).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMTT.2016.2604319

and noise level [6], [7]. Nevertheless, high-quality-factor
varactors have low power consumption and are highly tunable.
For these reasons, their manufacturing improved UHF applica-
tions [8] and they can be used to amplify parametrically large
signals [9]. Recently, a dynamic low-pass filter employing
varactors in a CMOS process has been simulated to be used
as a frequency divider and as a parametric amplifier [10]. In
2015, a time-varying transmission line with varactor diodes
was implemented and proposed as a circulator device that
allows transmission and reception of signals at the same time
and the same frequency [11].

Also, Kozyrev et al. [12] achieved parametric amplifica-
tion in distributed high-pass transmission lines that exhib-
ited metamaterial behavior. Employing (nonlinear) varactors,
they also reported harmonic and subharmonic generation,
modulated instabilities, and envelope solitons [13]. Further,
English et al. [14] showed experimentally and numerically
that stable localized modes can be produced in a nonlinear
bandpass transmission line. Gorkunov and Lapine [15] stud-
ied a metamaterial slab composed of an array of split-ring
resonators tuned by an external microwave magnetic field.

The modulated or dynamic transmission line (DTL) pre-
sented in this paper differs from the TWPA in an important
aspect: the propagating pump wave is replaced by uniform or
in tandem modulation. That is to say, the capacitance in all unit
cells is the same periodic function C(t). A former publication
was based on a hypothetic lossless DTL with time-periodic
shunt capacitances, however, without specifying the source
of modulation [16]. Now, a DTL can be represented as an
effective medium if electromagnetic (EM) waves propagating
in this medium and in the DTL obey the same dispersion rela-
tion ω(β). This occurs in the long-wavelength limit βa � 1,
where the distributed capacitance and inductance can be
described in terms of an effective permittivity and permeabil-
ity, respectively. Previously, it was found that the dispersion
relation for such a dynamic medium with periodic permittiv-
ity ε(t) is periodic in ω and that there are forbidden bands for
the phase constant β [17]. Very recently, we reported the first
experimental observation of such a band-gap in a DTL [18].
Further, we showed that a dynamic-periodic slab gives rise
to harmonics of the modulation frequency in the reflected
and transmitted light [17], that parametric resonances in the
response are obtained under appropriate conditions [19], and
that in some cases, pulses of harmonics can traverse the slab
faster than light in vacuum [20].

We suppose that all the above-listed effects [17], [19], [20]
can be reproduced in DTLs. In addition, it is expected that
DTLs could be used not only as parametric amplifiers and
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frequency converters but also as controllable delay lines.
A 2-D DTL could separate and route composite signals that
are omnipresent in modern communications. Other applica-
tions associated with the forbidden β-bands are also possible.
Moreover, the working frequency can range from kilohertz to
terahertz using split-ring resonators.

In Section II-A, we present a realistic model for our DTL
that includes losses as well as explicit modulation sources that
feed the nonlinear varactors. In continuation, in Section II-B,
we derive the differential equation for the nodal voltage
from Kirchhoff’s laws applied to the aforementioned model.
In Section II-C, we present a perturbational solution for the
traveling wave and the eigenvalue equation that describes the
dispersion relation for the DTL. Next, in Section II-D, we
show that in the long-wavelength limit, neglecting resistance
effects, propagation in the DTL can be described by an
effective medium. In Section II-E, an approximate analytical
solution is presented to show that the propagation constant
forms two bands β1(ω) and β2(ω) that are separated by a
bandgap. Subsequently, in Section II-F, we solve numerically
the eigenvalue equation for a realistic model and compare
the resulting band structure with that for the approximate
analytical solution of Section II-E. After that, in Section III,
we describe in detail the fabricated DTL, the measurement
of the dispersion relation β(ω), and its comparison to the-
oretical band structures. Finally, in Section IV, we present
conclusions.

II. MODELING, THEORY, AND THEORETICAL RESULTS

A. Realistic Modeling of the Externally
Modulated Transmission Line

A DTL can be implemented using microstrip technology.
A microstrip consists of a dielectric substrate with a ground
level copper layer at the bottom and a copper line at the
top. The microstrip has a capacitance and an inductance per
unit length and their values can be modified inserting lumped
elements. The modulation in time can be achieved by means
of varactors, which are solid-state devices whose capacitance
can be regulated by a dc voltage. However, such a capacitance
can become time dependent, if the voltage governing it has
an ac component. Indeed, the capacitances of the DTL are
controlled by an ac voltage and a dc voltage for inverse
polarization. In this paper, the voltage applied to the varactors
is harmonic, namely, V�(t) = V̄�[1+m sin(�t)]. Here, V̄� is
the inverse polarization voltage and �/2π ≡ fM and m are,
respectively, the modulation frequency and strength (or briefly,
“modulation”) of the ac voltage.

A realistic description of the DTL requires considering not
only the modulation voltage V�(t) but also a finite conductiv-
ity for the microstrip copper line, modeled as a series resis-
tance R, substrate losses modeled as a shunt conductance G,
a current leakage through the modulation feeding lines corre-
sponding to the resistance R�, and a parasitic capacitance CP

associated with the microstrip (which cannot be modulated).
The resistance R� experienced by the propagating wave has to
be chosen high, so as to avoid current flow through the voltage
source (which would diminish the modulation intensity m).

Fig. 1. Low-pass DTL unit cell of length a between nodes N and N +1. The
voltages V�(t) have the same amplitude and phase at all nodes. As a result,
the capacitances C[V (t)] are modulated in tandem and the voltage difference
VN − VN+1 is given by only the small signal voltage of frequency ω of the
traveling wave.

On the other hand, the modulating current should “see” a very
small resistance in order to have a negligible voltage drop over
the resistance R� in comparison with V�(t). This ensures that
the nodal voltage is approximately given by the modulation
voltage, as explained in the Appendix. The unit cell of the
DTL is shown in Fig. 1 along with the currents and voltages
at the nodes N and N + 1.

If the capacitance is voltage dependent, then the ac current
through such a capacitor is

I (t) = d Q

dt
= d

dt
[C(V )V (t)]. (1)

It follows that

I (t) =
{

C[V (t)] + dC

dV
V (t)

}
dV

dt
. (2)

Thus, we see that because of the dependence of C on V ,
the current is not determined by the capacitance itself, but
rather by the expression in the curly brackets, which we name
dynamic capacitance, being of interest only if the current
and voltage are time dependent. Other expressions such as
incremental capacitance, differential capacitance, and junction
capacitance are also used. A negative capacitance effect has
been observed in semiconductor devices [21].

For convenience, we include the parasitic capacitance CP

in our definition of the dynamic capacitance

C̃(V ) = C(V ) + dC

dV
V + CP . (3)

Then the current through a varactor is simply

IC (t) = C̃[V (t)]dV

dt
. (4)

The dependences of the dynamic and conventional capaci-
tances on applied voltage are shown in Fig. 2. It is significant
that unlike the conventional capacitance C(V ), the dynamic
capacitance can be negative for a range of voltages, as seen
in Fig. 2.

B. Derivation of Differential Equation for the Nodal Voltage

Applying Kirchhoff’s current law to node N in Fig. 1,
we have

IN−1 − IN = ICN + IG N + I�N . (5)
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Fig. 2. Conventional and dynamic capacitances as a function of applied
voltage for the varactor diodes in the DTL.

Next, we apply the operator Ld/dt to the last equation

L
d(IN−1)

dt
− L

d(IN )

dt
= L

d(ICN )

dt
+ L

d(IG N )

dt
+ L

d(I�N )

dt
.

(6)

Using Kirchhoff’s voltage law, the voltage difference between
nodes can be expressed in terms of the resistance R, the
inductance L, and the corresponding currents as

VN−1 − VN = L
d(IN−1)

dt
+ RIN−1 (7a)

VN − VN+1 = L
d(IN )

dt
+ RIN . (7b)

The currents associated with the resistance R� and the con-
ductance G on node N are given by

I�N = (VN − V�)/R� (8a)

and

IG N = GVN . (8b)

According to (4), the current through the varactor is

ICN = C̃(VN )dVN /dt . (8c)

With the help of (5), (7), and (8) and with the
abbreviationG R = G + 1/R�, (6) can be rewritten as

VN−1 + VN+1 − 2VN − RC̃(VN )
dVN

dt
− RG R VN

− L
d

dt

[
C̃(VN )

dVN

dt

]
−LG R

dVN

dt
= − R

R�
V� − L

R�

dV�

dt
.

(9)

In the next section, we will proceed to solve this equation
for the signal voltage wave.

C. Perturbational Solution for the Signal Wave
and the Eigenvalue Equation

The nodal voltage VN (t) is composed of the voltage U�(t),
approximately equal to the modulation voltage V�(t) for a
sufficently small resistance R� (see the Appendix) and the
voltage vN (t) of the traveling (signal) wave

VN (t) = U�(t) + vN (t). (10)

We also assume that the latter voltage is much smaller than
the former

|vN (t)| � U�(t) (11)

so that the varactor modulation is mostly due to the modulation
voltage. The capacitance as a function of nodal voltage can be
then written approximately as the first two terms of a Taylor
series

C̃(VN ) = C̃(U�) + C̃ ′(U�)vN (t) (12)

where the prime implies differentiation with respect to the
argument. The small signal voltage on node N can be
expressed as vN (t) = v(t)e jβaN . It follows that

vN±1(t) = vN (t)e± jβa. (13)

Equations (10) and (13) imply that the first three terms of (9)
are proportional to vN (t) [U�(t) canceling out]

VN−1 + VN+1 − 2VN = vN−1 + vN+1 − 2vN

= (e− jβa + e jβa − 2)vN

= 2(cos βa − 1)vN . (14)

Substituting (10), (12), and (14) in (9) (and omitting the index
N on vN ), we obtain a differential equation for v(t) of the form
(see the Appendix)

S(t)
d2v(t)

dt2 + T (t)
dv(t)

dt
+ U(t)v(t) = F(t). (15)

The functions S(t), T (t), U(t), and F(t) all being peri-
odic with the period 1/ fM = 2π /�, the left-hand side
of this equation can only have terms that are proportional
to exp[ j (n� − ω)t] (associated with the traveling wave of
frequency f = ω/2π), while the right-hand side can only
have terms proportional to exp( jn�t) (associated with the
modulation in the absence of a wave). Hence, (15) can be
satisfied at every instant of time only if its two sides vanish
independently and identically. As shown in the Appendix,
the requirement F(t) = 0 leads to the conclusion that
U�(t) ∼= V�(t) if the resistance R� is sufficiently small
(as satisfied experimentally).

We then turn to the homogeneous differential equation
obtained by replacing the right-hand side of (15) by zero.
One solution has the form of a temporal Bloch–Floquet wave,
namely, a harmonic oscillation e− jωt with a periodically
modulated amplitude

∑
n ṽne jn�t

ṽ(t) =
∑

n

ṽne j (n�−ω)t . (16)

Substitution in (15) with F(t) = 0 gives∑
m

Sme jm�t
∑

n

ṽn( jn� − jω)2e j (n�−ω)t

+
∑

m

Tme jm�t
∑

n

ṽn( jn� − jω)e j (n�−ω)t

+
∑

m

Ume jm�t
∑

n

ṽne j (n�−ω)t = 0 (17)

where S(t), T (t), and U(t) have been expanded in Fourier
series.
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It follows that∑
m

∑
n

[Um + Tm( jn� − jω) + Sm( jn� − jω)2]ṽn

× e j (m+n)�t = 0. (18)

This will be satisfied at all times provided that∑
n

[Um−n + j (n� − ω)Tm−n − (n� − ω)2Sm−n]ṽn = 0.

(19)

Because Um−n depends on β, this is an eigenvalue equation
that determines the dispersion relation ω(β).

D. Effective Medium Description

In this section, we show that for waves of long wavelength
2π /β in comparison with the period a, propagation in the
DTL can be described by an effective medium approximation.
We also neglect all mechanisms of absorption (R = 0, G = 0,
and R� = ∞), thus replacing U�(t) by V�(t) in (A.3). With
F(t) = 0 and βa � 1, (15) then becomes

LC̃(V�)
d2v

dt2 + 2LC̃ ′(V�)V̇�(t)
dv

dt
+ [β2a2 + LC̃ ′(V�)V̈�(t) + LC̃ ′′(V�)V̇ 2

�(t)]v(t) = 0.

(20)

This can be rewritten as

L

a

C̃(V�)

a

d2v

dt2 + 2
L

a

d

dt

[
C̃(V�)

a

]
dv

dt

+
{

β2 + L

a

d2

dt2

[
C̃(V�)

a

]}
v(t) = 0 (21)

or, compactly, as

L

a

d2

dt2

{
C̃(V�)

a
v(t)

}
+ β2v(t) = 0. (22)

Comparing (22) with the wave equation for a plane wave
propagating in a dielectric medium of dynamic permittiv-
ity ε(t) and permeability μ (=const), it has been derived
in [17], although with the assumption that μ = μ0 (the vacuum
permeability). The generalization to μ �= μ0 is straightforward
and reads

μ
d2

dt2 {ε(t)E(t)} + β2 E(t) = 0. (23)

From the comparison, we then conclude that the properties
of a voltage wave propagating in a DTL are identical to
the properties of an EM wave that propagates in a dielectric
(“effective”) medium provided that

C̃[V�(t)]/a = ε(t), for all t (24a)

L/a = μ (24b)

βa � 1 (24c)

and that losses are
We note that in this section, no particular model has

been assumed for the varactor, that is, the function C̃(V�)
is arbitrary. Moreover, neither has the form of the temporal
modulation been restricted, and thus V�(t) is not necessarily
a periodic function as far as (24a) is concerned.

Fig. 3. Capacitance modulation M versus voltage modulation m, according
to (28) for three values of the polarization voltage V̄�.

E. Linear Modeling of the Varactor and the
Approximation of Weak Modulation

In this section, we will solve the eigenvalue equation (19)
analytically, subject to appropriate approximations. The pur-
pose is to show that two bands are obtained for the propagation
constant, β1(ω) and β2(ω), and that these bands are separated
by a bandgap that is proportional to the modulation m. A linear
approximation for the dynamic capacitance suffices if m � 1

C̃(V ) = C̃(V̄ ) + (dC̃/dV̄ )(V − V̄ ). (25)

We also assume harmonic modulation

V�(t) = V̄�(1 + m sin �t). (26)

With the abbreviations C̃(V̄ ) = C̃ and dC̃/dV̄ = C̃ ′,
(25) becomes

C̃(V̄�, t) = C̃ + C̃ ′V̄�m sin �t (27)

or

C̃(V̄�, t) = C̃(1 + M sin �t) M = C̃ ′V̄�m/C̃. (28)

Then the only nonvanishing Fourier components in (19) are

S0 = LC̃ S±1 = ∓( j/2)M LC̃ (29a)

T0 = LG R + RC̃ T±1 = MC̃(�L ∓ j R/2) (29b)

U0 = 4 sin2(βa/2) + RG R U±1 = MC̃�(R ± j�L)/2.

(29c)

Fig. 3 shows how the modulation M of the dynamic
capacitance C̃(t) can be quite different from the modulation m
of the voltage V�(t), as described by (28). In the case of weak
modulation, the important harmonics are n = 0 and n = 1.
This follows from the empty lattice model of periodicity [22]
applied to temporal modulation of the capacitance. We will
then restrict the values of m and n in (19) to 0 or 1. This
results in the two homogeneous equations

(U0 − jωT0 − ω2S0)ṽ0

+ [U−1 + j (� − ω)T−1 − (� − ω)2S−1]ṽ1 = 0

(U1 − jωT1 − ω2S1)ṽ0

+ [U0 + j (� − ω)T0 − (� − ω)2S0]ṽ1 = 0. (30)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

REYES-AYONA AND HALEVI: EM WAVE PROPAGATION IN EXTERNALLY MODULATED LOW-PASS TRANSMISSION LINE 5

The determinant of the coefficients of ṽ0 and ṽ1 must vanish,
and hence,

(U0 − jωT0 − ω2S0)(U0 + j (� − ω)T0 − (� − ω)2S0)

− (U1 − jωT1 − ω2S1)(U−1 + j (� − ω)T−1

− (� − ω)2S−1) = 0. (31)

It is easy to see that this leads to a quadratic equation for
sin2(βa/2) and, therefore, two bands β1(ω) and β2(ω). These
are plotted in Section II-F and are compared with the “exact”
band structure. The closest approach between these bands
occurs at the frequency ω = �/2, to which we restrict the
calculation that follows. Substitution of (31) in (29) leads to
the approximate result [assuming (2R/�L)2 � 1]

4 sin2(βa/2) = �̃2/4 − RG R ± (�̃2/8)

× [M2 − 16(G R/�C̃ + R/�L)2]1/2

G R = G + 1/R�. (32)

Here, we defined the normalized circular frequency
(for C̃ > 0) as

�̃ = �
√

LC̃ . (33)

First, we analyze the lossless case, with R = G = 0 and
R� → ∞. Then we can express (32) compactly as

2 sin(β±a/2) = (�̃/2)(1 ± M/2)1/2. (34)

This equation has two solutions for β, provided that
(�̃/4)(1 + M/2)1/2 ≤ 1. Therefore, having assumed weak
modulation (M � 1) in this section, the parameter �̃ cannot
be greater than 4. That is to say, if �̃ > 4, no propagation can
take place in the DTL for frequencies ω � �/2. This estab-
lishes the important characteristic of a periodically modulated
DTL that there are two bands, β−(ω) or β1(ω) and β+(ω)
or β2(ω), separated by a β-gap whose width is proportional
to the modulation.

In the long-wavelength limit βa � 1, (34) becomes

β±a � (�̃/2)(1 ± M/2)1/2 (35)

and with β± � β̄ ± �β/2, the forbidden bandgap is

�βa � �̃M/4 M � 1 (36)

or

�β/β̄ � M/2. (37)

Thus, in this approximation, the normalized gap depends only
on the modulation of the capacitors.

Returning to consider the resistances R, 1/G, and R�,
(32) can be rewritten as

4 sin2(βa/2) = (�̃2/4)− RG R ± (�̃2/8)
[
M2−M2

R

]1/2 (38)

where

MR = 4(G R/�C̃ + R/�L). (39)

According to (38), there are three possible behaviors for the
phase constant values βa.

1) M > MR: The square root is real, so that the phase con-
stant values are real, β+ �= β−, and there is a bandgap

�β = β+ − β−. In the approximation considered, two
undamped waves propagate.

2) M = MR: Now β+ = β− = β̄, and the solution reduces
to

2 sin(βa/2) � (�̃/2)(1 − 2RG R/�̃2). (40)

Hence, the two β-bands now touch at ω = �/2 and
there is no β-gap. Only a single wave propagates.

3) M < MR : The square root is imaginary, so approxi-
mately

4sin2(βa/2) ∼= (�̃2/4) ± j (�̃2/8)
(
M2

R − M2)1/2
.

(41)

This has solutions of the form β = β ′(1 ± jκ), where
β ′ and κ are real and κ � 1. If βa � 1, considering that
the first term on the right-hand side is much larger than the
second term, we have

βa � (�̃/2)
[
1 + ( j/4)

(
M2

R − M2)1/2]
. (42)

Here, we have selected the physically correct sign of the square
root (+) that gives rise to attenuation. A single damped wave
propagates.

F. Numerical Results for the Electromagnetic Band Structure

In the previous section, a linear model was considered for
the dynamic capacitance of the varactors. Now, we proceed
to very accurate modeling and present the resulting dispersion
curves. The dynamic capacitance is described by the quadratic
expansion

C̃(V ) = C̃ + C̃ ′(V − V̄ ) + 1

2
C̃ ′′(V − V̄ )2. (43)

With harmonic modulation (26), this becomes

C̃(V ) = C̃ + C̃ M sin �t + C̃ ′′V̄ 2
�m2 sin2(�t)/2 (44)

where the capacitance modulation M has been defined in (28)
and its relation with m is shown in Fig. 3 for the varactor
of Fig. 2.

The only nonvanishing Fourier components of
(A.3a)–(A.3c) are

S0 = L(C̃ + Q) S±1 = ∓ j LC̃ M/2 S±2 = −L Q/2

(45a)

T0 = LG R + R(C̃ + Q) T±1 = C̃ M(�L ∓ j R/2)

(45b)

T±2 = −Q(R/2 ± j2�L) U0 = 4 sin2(βa/2) + RG R

(45c)

U±1 = �C̃ M(R ± j�L)/2 U±2 = �Q(2�L ∓ j R)

(45d)

where

Q = C̃ ′′V̄ 2
�m2/4 C̃ ′′ = d2C̃(V )/dV̄ 2. (46)

Using (45), we solved numerically (19) and compared the
results with the ones obtained by the approximate dispersion
relation given by (31). Figs. 4–8 show the dispersion curves
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Fig. 4. Accurate and approximate dispersion relations for two values of
the voltage modulation strength m. The solutions have excellent agreement
for the weak modulation (m = 0.2), but the approximate band structure is
not accurate for the second β band for m = 0.6. The parameter values are
R� = 800 �, G = 0.001 S, R = 0.24 �, V̄� = 0.6 V, and fM = 200 MHz.

Fig. 5. Accurate and approximate dispersion relations for three values of
the polarization voltage V̄�. The modulation intensity and resistances are the
same for all curves. Capacitance values depend on V̄�, and as a consequence,
they are different for each voltage value. The parameters are R� = 800 �,
G = 0.001 S, R = 0.24 �, m = 0.3, and fM = 500 MHz.

for the accurate and the approximate solutions for two values
of modulation. For Figs. 4–8., the inductance value L =
11.85 nH. As expected, the forbidden bandgap is directly
associated with the modulation intensity m.

Fig. 5 shows the dispersion relations for three values of the
polarization voltage V̄�. The approximate solution describes
extremely well the DTL dispersion relation, failing only for
the second band in the case of V̄� = 0.9 V. Because this
solution is not limited to small values of the phase constant βa,
it can mimic well the accurate solution even for βa � 1.
In Fig. 5, the voltage modulation has the same value m = 0.3,
but the capacitance modulation values are different for each
value of V̄�: M = 0.16 for V̄� = 0.3, M = 0.39 for V̄� = 0.6,
and M = 0.81 for V̄� = 0.9. As a consequence, there is not

Fig. 6. Accurate and approximate dispersion relations for three values of
the normalized modulation frequency �̃. All the other parameters of the DTL
are identical: R� = 800 �, G = 0.001 S, R = 0.34 �, m = 0.3, and
V̄� = 0.9 V.

Fig. 7. Band structures are compared for the DTL and the effective
medium for two values of the modulation m. Bandgaps are larger for the
effective medium due to neglect of losses. The parameters are R� = 2000 �,
G = 0.001 S, R = 0.04 �, V̄� = 0.6 V, fM = 200 MHz, and �̃ = 0.53.

even a bandgap for V̄� = 0.3 even though the associated phase
constant is larger due to a bigger capacitance, but there is a
bandgap for V̄� = 0.9 while the corresponding βa values are
the smallest.

Fig. 6 presents the dispersion relations for different values
of the normalized modulation frequency �̃(= �(LC̃)

1/2
).

The dispersion curves are qualitatively different from those
in Fig. 5. In Fig. 5, the wider bandgap occurs at small
values of the phase constant, while in Fig. 6, this happens
for larger values of βa. In Fig. 6, three different values of �̃
are considered. The capacitance modulation M needed to
overcome losses, in order to have a bandgap, is frequency
dependent and it decreases as the modulation frequency �
increases (and the value of �̃ augments), as shown in Fig. 6.

We developed realistic modeling of a DTL, based on
(19), as well as an approximate treatment, according to (32).
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TABLE I

COMPARISON OF ACCURATE SOLUTIONS OF (19) AND APPROXIMATE
SOLUTIONS OF (32) FOR THE DTL. HERE, R = 0.12 �,

R� = 2000 �, G = 0.001 S, AND V̄� = 0.6 V

This approximation gives good insight into the behavior of
the DTL for relatively large values of the parameter �̃, as
seen in Table I. From Table I, we can appreciate that β̄a is
well given by the approximation �̃/2 [see (35)] regardless
of the modulation M . On the other hand, in the last two
columns, another rough approximation, �β/β̄ � M/2 [see
(37)] is reasonable only for �̃ = 0.8 and 1.2. This is due
to the fact that resistances are neglected in (35)–(37), and as
� (and therefore �̃) increase, losses become less important
[see (39)]. Regarding the comparison between accurate and
approximate solutions, this is quite good for �̃ = 0.6, 0.8,
and 1.2, but fails for �̃ = 0.4 (even though both solutions
take into account losses). The reason for this is that in (32),
the approximation (2R/�L)2 � 1 is not well satisfied for
small �̃.

Now we compare the dispersion relations for the DTL and
the effective medium. Because losses have not been considered
for the effective medium, there is no good agreement for the
bandgap width. Fig. 7 shows the dispersion relations for two
values of m, with the phase constant replaced by βn = βa/�̃.
Taking into account (24), βn = β/�(με̄)1/2 for the effective
medium is independent of the period a. Fig. 8 presents
the DTL and effective medium dispersion relations for three
values of �̃. There is a very good correspondence for
values of the normalized phase constant βn smaller than
about 0.5.

III. EXPERIMENT, EXPERIMENTAL RESULTS, AND

COMPARISON OF EXPERIMENTAL AND

THEORETICAL BAND STRUCTURES

First, we discuss the components needed for the experiment.
A DTL with eight 5-mm cells was fabricated using microstrip

Fig. 8. Dispersion curves for the DTL and effective medium for three values
of the normalized circular frequency �̃. Here, R� = 2000 �, G = 0.001 S,
R = 0.04 �, V̄� = 0.6 V, and m = 0.3.

technology on an RT Duroid 5880 substrate with the following
characteristics: dielectric constant = 2.2 ± 0.02, dissipation
factor (tan δ) = 0.0009, dielectric thickness = 1.575 mm,
and copper layer thickness = 35 μm. Commercial inductors
of 1 mm × 0.5 mm were inserted in the DTL, with an
inductance of 10 nH in the internal cells and an inductance
of 5 nH in the cells at the ends. An SMV1249 hyperabrupt
union varactor from Skyworks of 1.6 mm × 0.8 mm was
inserted in each cell. The capacitance–voltage relation for this
varactor is shown in Fig. 2. There are seven vias of 0.5 mm
to ground at each varactor ground level to guarantee good
grounding. Besides the DTL, we also used the following.

1) Eight bandpass filters with a central frequency of
310 MHz and a fractional bandwidth of 5.6%.
Each bandpass filter is based on a miniaturized ring
resonator [23] of 16 mm × 16 mm fabricated on
an RT Duroid 6010.2LM substrate with dielectric
constant = 10.7, tan δ = 0.0023, and dielectric
thickness = 1.27 mm.

2) Eight matched amplifiers with an RFMD’s InGaP HBT
MMIC amplifier using coplanar technology.

3) Two 50-� coaxial power splitters 4 way-0° ZN4PD1-
63W+.

4) Two 50-� coaxial power splitters 2 way-0° ZX10R-14+.
5) Four low-pass filters with a cutoff frequency of

260 MHz.
6) Low-loss 50-� coaxial cables.

Fig. 9 shows a photograph of the fabricated DTL.
The experimental setup (shown in Fig. 10) was as fol-

lows. The dc inverse polarization voltage was provided by
a single dc voltage source through an ac blocking network,
ensuring that V̄� [and consequently C̃(V̄ )] is the same for
all varactors. The modulation voltage signal of 310 MHz was
obtained from a signal generator Anritsu MG3692C and then
with the combination of one two-way splitter and two four-
way splitters, divided into eight equal voltage signals. Every
divided signal then passed through the amplifiers and was
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Fig. 9. Photograph of the 63 mm × 25.2 mm fabricated eight-cell DTL,
including feeding lines, ac blocking network, dc blocking capacitors, and
coupling impedances for the modulation lines. SMA connectors were used.
A single cell is also shown.

Fig. 10. Block diagram of the experimental setup (and a photograph),
where LPF indicates low-pass filter, BPF means bandpass filter, CH stand
for oscilloscope channel, and TL includes feeding lines, ac blocking network,
unmodulated cells at its ends, and connectors that are also present at
the DTL.

amplified. In continuation, each of these signals went through
a bandpass filter and was then applied at each cell varactor
in order to be modulated. A low-pass filter, used to filter the
310-MHz modulation voltage and higher frequency harmonics,
was placed at each end of the DTL. The traveling-wave
signal of frequency f was generated from a signal generator
Anritsu MG3696B and then divided by a two-way splitter
into two halves. One half went right through the DTL, while
the other half, used as a back-to-back reference measurement,
went from end to end of the transmission line with identical
connectors, feeding lines, dc blocking capacitors, ac blocking

Fig. 11. Theoretical (solid line) and experimental (asterisks) dispersion
relations, along with that for the corresponding effective medium (dots) for
m = 0.52. Inset: zoomed-in view of the forbidden phase constant band. Such
a gap in β-bands obtains only if m > mmin = 0.39 (38 and 39). Here,
R = 0.23 �, G = 0.001 S, and R� = 800 �.

Fig. 12. Spectra of the recovered signals at the end of the DTL for
six externally launched voltage signals of varying frequencies f , where
harmonics fM − f are also present. The peaks at fM = 310 MHz all
have the same amplitude confirming that the modulation intensity is the same
for all the externally launched signal frequencies and that the modulation
voltage at all the nodes is the same V�(t) as explained in the Appendix.
Here, L = 11.85 nH, G = 0.001 S, V̄� = 0.6 V, and m = 0.5 when:
(a) f = 100, 110, and 120 MHz and (b) f = 140, 150, and 155 MHz.

network, and low-pass filters at its ends as the DTL. The
two signals were then simultaneously recovered, displayed,
and stored on a 2.5-GHz LeCroy oscilloscope. Digital signal
processing was then performed on the stored signals allowing
them to be separated into individual phase shift components
(β1a, β2a, …). The phase constant is 8ω�t and �t is the time
difference between the transmitted wave and reference wave.
The process is then repeated for different values of f (from
10 to 305 MHz) and the dispersion relation is obtained.
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Fig. 13. Recovered signals at the end of the DTL after digital signal process-
ing where there is an envelope signal of lower frequency, corresponding to
beats. The externally launched traveling waves have frequencies (a) 154,
(b) 153, (c) 152, and (d) 150 MHz. Here, L = 11.85 nH, G = 0.001 S,
and V̄� = 0.3 V.

The resulting experimental dispersion relation for voltage
modulation of m = 0.52 and normalized phase constant
βn = βa/�̃ [=β/�(με̄)1/2] is shown in Fig. 11. It is compared

with the band structures obtained from the “realistic theory”
of the DTL (Section II-F) and the effective medium treatment
(Section V). There is excellent agreement between the three
descriptions. The dispersion curves for the effective medium
(based on the assumption of βa � 1), though, become less and
less accurate as βn increases beyond ∼0.8, as in Figs. 7 and 8.
This behavior is very well confirmed by a detailed calculation,
based on the Bloch–Floquet theorem in time and applied to
an accurate model of the DTL. Just as frequency gaps are
characteristic of spatial periodicity, β-gaps are a hallmark of
temporal periodicity.

Fig. 12 illustrates the measured spectra of several signals
transmitted all the way through the DTL for six externally
launched traveling waves of frequency f , where the harmonics
fM − f are present. The frequencies of the harmonics are
210 MHz = (310−100) MHz, 200 MHz = (310−110) MHz,
190 MHz = (310−120) MHz, 170 MHz = (310−140) MHz,
and 160 MHz = (310 − 150) MHz.

In continuation, we present another experimental result for
the fabricated DTL. As is well known, when two frequencies
f1 and f2 are nearly equal to each other, beats occur [24].
This phenomenon can be observed in many cases, being
especially notable for sound. It follows from (16) that a DTL
has a harmonic fM − f due to the temporal periodicity, as
also described for a dynamic medium slab in [17]. For the
externally launched traveling-wave signal of frequency f1,
the DTL generates another wave signal of frequency
f2 = fM − f1. Fig. 13 presents the interaction of these two
signals for four cases of f1 where beats can be appreciated.
The beats of Fig. 13(a) have a frequency of 2 MHz corre-
sponding to | f1 − f2| = |154 − 156| MHz. The beats of
Fig. 13(b)–(d) have frequencies |153 − 157| MHz = 4 MHz,
|152−158| MHz = 6 MHz, and |150−160| MHz = 10 MHz.
These values correspond to a modulation frequency of
fM = 310 MHz and modulation m = 0.25.

IV. CONCLUSION

We have presented an in-depth study of EM wave
propagation in a low-pass DTL, with the capacitors replaced
by varactors that are modulated identically by an external
voltage source that is periodic in time. We have designed
and fabricated such a DTL with a frequency of modulation
fM = 310 MHz. A series of signal waves with frequencies f
up to 305 MHz were launched and the corresponding
propagation constants β(ω) were measured. The two bands
β1(ω) and β2(ω) were obtained and these turn out to be
separated by a bandgap �β, provided that the modulation M
of the dynamic capacitances C̃(t) is sufficiently strong to
overcome resistive effects (M > MR ).

We also showed that for waves of sufficiently large wave-
length in comparison with the cell size of the DTL (βa � 1),
the dispersion β(ω) can be well represented by a mean
field theory. This provided that the permittivity ε(t) of the
effective medium is equal to the distributed capacitance C̃(t)/a
at every instant of time and that the permeability μ of this
medium is equal to the distributed inductance L/a, neglecting
damping effects.
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We also demonstrated experimentally that for every work-
ing frequency f , the DTL generates harmonics fM − f .
In addition, we showed experimentally that the DTL generates
beats for externally launched voltage signals of frequencies
nearly equal to half of the modulation frequency.

APPENDIX

PROOF OF (15) AND OF U�(t) ∼= V�(t)

Equation (9) can be written as

−4 sin2(βa/2)vN (t) − R[C̃(U�) + C̃ ′(U�)vN (t)]
× [U̇�(t) + v̇N (t)] − RG R [U�(t) + vN (t)]
− LG R[U̇�(t) + v̇N (t)] − L

d

dt
× {[C̃(U�) + C̃ ′(U�)vN (t)][U̇�(t) + v̇N (t)]}

= − R

R�
V�(t) − L

R�
V̇�(t) (A.1)

where (·) means derivative with respect to time.
Now, we group together the terms proportional to vN (t),

v̇N (t), and v̈N (t) (neglecting the quadratic expressions) result-
ing in the following inhomogeneous differential equation:

[4 sin2(βa/2) + RC̃ ′(U�)U̇�(t) + RG R

+ LC̃ ′′(U�)U̇2
�(t) + LC̃ ′(U�)Ü�(t)]vN (t)

+ [RC̃(U�) + 2LC̃ ′(U�)U̇�(t) + LG R ]v̇N (t)

+ [LC̃(U�)]v̈N (t)

= (R/R�)V�(t) + (L/R�)V̇�(t) − RG RU�(t)

− [LG R + RC̃(U�)]U̇�(t) − LC̃(U�)Ü�(t)

− LC̃ ′(U�)U̇2
�(t). (A.2)

Equation (A.2) has the form (N being arbitrary)

S(t)
d2v(t)

dt2 + T (t)
dv(t)

dt
+ U(t)v(t) = F(t) (15)

where

S(t) = LC̃(U�) (A.3a)

T (t) = 2LC̃ ′(U�)U̇�(t) + RC̃(U�) + LG R (A.3b)

U(t) = 4 sin2(βa/2) + LC̃ ′(U�)Ü�(t) + LC̃ ′′(U�)U̇2
�(t)

+ RG R + RC̃ ′(U�)U̇�(t) (A.3c)

F(t) = −(R + Ld/dt)[C̃(U�)U̇�(t) + G RU�(t)

− (1/R�)V�(t)] (A.3d)

where we used simple algebra to compactly rewrite the right-
hand side of (A.2), namely, F(t).

Now, as argued after (15), its solution mandates that
F(t) = 0. Then it follows from (A.3d) that

C̃(U�)dU�/dt + G RU�(t) − (1/R�)V�(t) = 0. (A.4)

We will not be concerned with a general solution for U�(t) in
terms of V�(t). It suffices to say that the first term, which is
on the order of �C̃U�(t), is negligible in comparison with the
second term, because �C̃ � G R under standard experimental
conditions. In addition, G � 1/R�, so that G R ∼= 1/R�.
Hence, (A.4) simply reduces to

U�(t) ∼= V�(t). (A.5)

This implies that in (A.3a)–(A.3c), and thus (15), the volt-
age U�(t) can be replaced by the modulation voltage V�(t)
to a very good approximation.
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